List

Vision-correcting displays

Technology could lead to e-readers, smartphones, and displays that let users dispense with glasses.

CAMBRIDGE, Mass. — Researchers at the MIT Media Laboratory and the University of California at Berkeley have developed a new display technology that automatically corrects for vision defects — no glasses (or contact lenses) required.

The technique could lead to dashboard-mounted GPS displays that farsighted drivers can consult without putting their glasses on, or electronic readers that eliminate the need for reading glasses, among other applications.

“The first spectacles were invented in the 13th century,” says Gordon Wetzstein, a research scientist at the Media Lab and one of the display’s co-creators. “Today, of course, we have contact lenses and surgery, but it’s all invasive in the sense that you either have to put something in your eye, wear something on your head, or undergo surgery. We have a different solution that basically puts the glasses on the display, rather than on your head. It will not be able to help you see the rest of the world more sharply, but today, we spend a huge portion of our time interacting with the digital world.”

Wetzstein and his colleagues describe their display in a paper they’re presenting in August at Siggraph, the premier graphics conference. Joining him on the paper are Ramesh Raskar, the NEC Career Development Professor of Media Arts and Sciences and director of the Media Lab’s Camera Culture group, and Berkeley’s Fu-Chung Huang and Brian Barsky.

Knowing the angles

The display is a variation on a glasses-free 3-D technology also developed by the Camera Culture group. But where the 3-D display projects slightly different images to the viewer’s left and right eyes, the vision-correcting display projects slightly different images to different parts of the viewer’s pupil.

vision defect is a mismatch between the eye’s focal distance — the range at which it can actually bring objects into focus — and the distance of the object it’s trying to focus on. Essentially, the new display simulates an image at the correct focal distance — somewhere between the display and the viewer’s eye.

The difficulty with this approach is that simulating a single pixel in the virtual image requires multiple pixels of the physical display. The angle at which light should seem to arrive from the simulated image is sharper than the angle at which light would arrive from the same image displayed on the screen. So the physical pixels projecting light to the right side of the pupil have to be offset to the left, and the pixels projecting light to the left side of the pupil have to be offset to the right.

The use of multiple on-screen pixels to simulate a single virtual pixel would drastically reduce the image resolution. But this problem turns out to be very similar to a problem that Wetzstein, Raskar, and colleagues solved in their 3-D displays, which also had to project different images at different angles.

The researchers discovered that there is, in fact, a great deal of redundancy between the images required to simulate different viewing angles. The algorithm that computes the image to be displayed onscreen can exploit that redundancy, allowing individual screen pixels to participate simultaneously in the projection of different viewing angles. The MIT and Berkeley researchers were able to adapt that algorithm to the problem of vision correction, so the new display incurs only a modest loss in resolution.

In the researchers’ prototype, however, display pixels do have to be masked from the parts of the pupil for which they’re not intended. That requires that a transparency patterned with an array of pinholes be laid over the screen, blocking more than half the light it emits.

Multitasking

But early versions of the 3-D display faced the same problem, and the MIT researchers solved it by instead using two liquid-crystal displays (LCDs) in parallel. Carefully tailoring the images displayed on the LCDs to each other allows the system to mask perspectives while letting much more light pass through. Wetzstein envisions that commercial versions of a vision-correcting screen would use the same technique.

Indeed, he says, the same screens could both display 3-D content and correct for vision defects, all glasses-free. They could also reproduce another Camera Culture project, which diagnoses vision defects. So the same device could, in effect, determine the user’s prescription and automatically correct for it.

###

Contact: Abby Abazorius, MIT News Office

abbya@mit.edu617.253.2709

 

Written by Larry Hardesty, MIT News Office

 

Related links

Glasses-free 3-D projector
https://newsoffice.mit.edu/2014/glasses-free-3-d-projector-0516

Multiview 3-D photography made simple
https://newsoffice.mit.edu/2013/multiview-3d-photography-made-simple-0619

In Profile: Ramesh Raskar
https://newsoffice.mit.edu/2011/profile-raskar-0929

  Posts

1 2 3
September 13th, 2016

Ramesh Raskar Lemelson-MIT 2016 Winner

Congratulations to Professor Ramesh Raskar and the Camera Culture Group  – Winner of the 2016 Lemelson-MIT prize Ramesh Raskar and […]

September 8th, 2016

Can computers read through a book page by page without opening it?

Terahertz time-gated spectral imaging for content extraction through layered structures A. R. Sanchez, B. Heshmat*, A. Aghasi, M. Zhang, S. […]

November 21st, 2018

Society of Autonomous Vehicles – Part 1

This is part 1 of a multi-part blog series about the Society of Autonomous Vehicles course held in Spring of […]

March 20th, 2018

Seeing Through Realistic Fog

A technique to see through dense, dynamic, and heterogeneous fog conditions. The technique, based on visible light, uses hardware that […]

March 29th, 2017

Efficient Lensless Imaging with a Femto-Pixel

Lensless Imaging with Compressive Ultrafast Sensing Guy Satat, Matthew Tancik, Ramesh Raskar Traditional cameras require a lens and a mega-pixel […]

September 28th, 2016

How to see through tissue

All Photons Imaging Through Volumetric Scattering Guy Satat, Barmak Heshmat, Dan Raviv, Ramesh Raskar We demonstrate a new method that […]

September 12th, 2016

The World is Our Lab

by Roger Archibald Photo credit: John Werner Ramesh Raskar, head of the Media Lab’s Camera Culture Group, takes measure of […]

March 27th, 2016

Handheld 3D Imager to visualize features in the throat like tonsils!

3D visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea […]

February 24th, 2016

How to use computer vision to improve cities

– Nikhil Naik Transcript from TEDx Beacon Street November, 2015 Here we see a picture of a little girl walking […]

February 12th, 2016

Optical Brush

Optical brush is an open-ended bundle of optical fibers that is enabled with time of flight technology to image and […]

December 3rd, 2015

Innovating for Billions – Ramesh Raskar’s UIST Keynote

28th ACM User Interface Software and Technology Symposium Charlotte, NC November 8-11, 2015 Watch the presentation on Youtube HERE Keynote […]

December 2nd, 2015

Making 3-D imaging 1,000 times better

Algorithms exploiting light’s polarization boost resolution of commercial depth sensors 1,000-fold. See MIT coverage here. Read more about the work […]

November 26th, 2015

Engineering Health Class Final Presentations on 4 Dec

Great projects and demos- wearables, 3D imaging, novel stethoscopes, imaging the eye, oral imaging.  Followed by health night with guest […]

November 2nd, 2015

Engineering Health Class featured in Medtech

Our Engineering Health class was featured in Medtech Boston. Read the full article here.

October 26th, 2015

OPEN POSITIONS: Technical Assistants

Technical Assistant # 1 Date: December-4-2015 The Camera Culture group at the MIT Media Lab focuses on making the invisible […]

October 15th, 2015

Time-of-Flight Microwave Camera to See Through Walls

New Camera Culture research in Nature Scientific Reports shows a prototype time of flight camera working at microwave frequencies. In […]

September 30th, 2015

How to Make a City Smart? The Indian Context

By: Pranav Chandrasekaran   Introduction – by Ramesh Raskar, Associate Professor Media Arts and Sciences, Head of the Camera Culture […]

September 11th, 2015

Kumbh Mela – The World’s Largest Moving City

Kumbh Mela in Nashik Article and Photography by John Werner   “The world’s largest city has no permanent address.”   […]

September 8th, 2015

Engineering Health Fall 2015 Course

MAS.S62: Join us for the first class on Friday, 11 Sept, 1-4 pm in E15-341(Click to go to class webpage)

June 26th, 2015

Vahe Tahmazyan Graduates with Best Thesis